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Abstract

This paper presents a new technique for dealing with
broken characters, one of the major challenges in the op-
tical character recognition (OCR) of degraded historical
printed documents. A technique based on graph combi-
natorics is used to rejoin the appropriate connected com-
ponents. It has been applied to real data with successful
results.

1 Introduction

Most commercial optical character recognition (OCR)
systems are designed for well-formed, modern business
documents. Recognizing older documents with low-quality
or degraded printing is more challenging, due to the high
occurrence of broken and touching characters. This paper
presents an algorithm that rejoins the pieces of broken char-
acters so they can be more robustly identified. The success
of this algorithm is then measured using a set of real-world
historical documents.

This research is part of the Gamera project [2], which
aims to create a tool for building document-specific recog-
nition systems for humanities documents. One of our goals
for this project has always been to provide general solutions
that will work across multiple languages and printing tech-
niques.

For the purposes of this paper, aconnected component
(CC) is a set of black pixels that are contiguous. By defi-
nition, characters arebrokenwhen they are made up of too
many CCs. Broken characters can not be joined simply by
the distance of the CCs alone, since two intentionally sepa-
rate characters can often be closer than the two parts of an
accidentally broken character.

The inverse problem of touching characters is solved us-
ing another approach where a symbol classifier is trained to
split connected components using projection-based heuris-
tics [3]. While the original intent of that approach was for
the splitting of musical symbols, it also performs extremely

well on Roman text (93% accuracy on our dataset).

2 Other approaches

Thresholding converts a color or greyscale image to a bi-
level image, such that black is used to indicate the presence
of ink on the page and white is used to indicate its absence.
Improving thresholding by looking for shades of grey in the
areas where CCs almost touch, using entropy, can reduce
the number of broken characters [7]. However, in many his-
torical documents, the characters are completely broken on
the page and intelligent thresholding, since it has no knowl-
edge of the shapes of the target characters, performs poorly.

Active contour models (ACM), or snakes [5], find a vec-
tor outline for each symbol using certain constraints on the
elasticity of the outline. Unfortunately, ACMs, which were
designed for gross shape recognition, perform poorly on the
fine details that are required to recognize printed characters.

Post-processing using some kind of language model, in-
cluding a dictionary orn-grams of a language [4] has also
been used to handle broken characters. However, such mod-
els are less useful for documents containing ancient lan-
guages, mixed-languages or a high occurrence of proper
nouns.

Therefore, an ideal solution would include knowledge
of the individual symbols without requiring a language-
specific model.

3 The algorithm

The goal of the broken character connection (BCC) al-
gorithm is to find an optimal way to join CCs on a given
page that maximizes the mean confidence of all characters.

The algorithm begins by building an undirected graph in
which each vertex represents a CC in the image. Two ver-
tices are connected by an edge if the border of the bound-
ing boxes are within a certain threshold of distance. Ex-
periments demonstrated that this threshold is best set to3/4

of the average distance between all bounding boxes. (CCs
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Figure 1. (a) an original image of a word from
the testbed; (b) how the connected compo-
nents are connected to form a graph; (c) the
correct solution.

can also be connected by morphological dilation, though
the bounding box method is much faster and produces only
slightly less accurate results.) This creates a forest of graphs
where each graph is roughly equivalent to a word in the doc-
ument. Figure 1(b) shows one such graph. A graph repre-
sentation, rather than a string representation, of connectivity
is necessary, since characters can be broken in thex- and/or
y-direction and cycles can occur between CCs.

Next, all of the different ways in which the CCs can be
joined are evaluated. Every possible connected subgraph is
enumerated, by performing a depth-first search from each
vertex. To avoid enumerating duplicate possibilities, the
vertexv assigned a numberNv, and an edge is traversed
from vertexa to b only if Nb > Na. To improve runtimes,
the depth of the search is limited to the maximum number
of CCs that would typically make up a single broken char-
acter. This constant is adjusted automatically based on the
amount of degradation in the image and is usually between
3 and 5. Each of these subgraphs is evaluated by merging all
of its CCs into a single image and sending it to the symbol
classifier. The symbol classifier returns a confidence value
that indicates how similar the merged image is to known
symbols in the database.

Since we are using ak nearest neighbor (k-NN) classi-
fier [1] for symbol classification, it was most convenient to
use a confidence measure based on distance. More elabo-
rate ways of determining confidence, such as analyzing the
clustering of symbols within the database, have been sug-
gested, but they do not significantly affect the success of
the BCC algorithm.

Once the parts of the subgraph have been evaluated, dy-
namic programming is used to find an optimal combination
of these parts that maximizes the mean confidence of the
characters across the entire subgraph (word).

While a full runtime complexity analysis of the algo-
rithm is beyond the scope of this paper, the asymptotic up-
per bound isO(n lnn), wheren is the number of vertices in

complete characters 81.3%
broken characters 10.7%
legitimately broken characters (i, j , ;, : etc.) 6.2%
touching characters 1.8%

Table 1. Distribution of character types in the
sample data. Note that failure to deal with
broken and touching characters gives a max-
imum possible accuracy of 81.3%.

the graph. However, when there are no cycles, the runtime
is reduced to roughlyO(kn), wherek is the maximum size
of the subgraphs.

4 Results

To evaulate the BCC algorithm, we used the Statistical
Accounts of Scotland [6]. This collection of census-like
data was printed in 1799, with reused metal type on wooden
blocks. The age of the paper, combined with the low-quality
type and press-work, presents challenges for OCR. Table
1 shows the distribution of the types of characters in the
collection. The manually-generated groundtruth data also
makes this collection valuable for research.

The results below were obtained by training the classi-
fier using five pages, and then testing the algorithm on five
additional unseen pages with similar typeface.

If the symbol classifier only has knowledge of the com-
plete characters in the image, BCC correctly finds 71% of
the broken characters in our test data. By training the sym-
bol classifier with examples of broken characters that were
manually identified, BCC correctly finds 91% of the broken
characters.

BCC also performs well with legitimately broken char-
acters, such asi, j , ; and:. By training the symbol classifier
with examples of each of these characters, BCC was able
to find and join 93% of the legitimately broken characters.
This renders further procedural programming of heuristic
rules (such as to attachı’s to dots) unnecessary. Therefore,
it easy to support new character sets that have other legit-
imately broken characters, such as the Greek majuscule xi
(Ξ).

5 Conclusion

The technique presented here performs very well on the
test dataset, not only for “accidentally” broken characters,
but also for those that are legitimately broken. In addition, it
seems to satisfy our goal of being relatively independent of
document type: it seems to adapt to new kinds of symbols
gracefully with a minimum of manual intervention.
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