
A Tutorial Introduction to the Gamera Framework∗

Christoph Dalitz
Hochschule Niederrhein, Fachbereich Elektrotechnik und Informatik

Reinarzstr. 49, 47805 Krefeld, Germany

Version 1.5, 20. Nov 2012

Abstract

TheGamera frameworkis a Python library for building custom applications for document analysis
and recognition. Additionally, it allows for custom extensions. While its online documentation is an
indispensable reference manual when working with Gamera, abeginner usually has trouble finding
his or her way through it. This tutorial hopes to bridge the gap by providing a kind of terse text book
on Gamera including exercises explaining the most common tasks.

Contents

1 Overview 2
1.1 Using Gamera .2
1.2 Extending Gamera .2

2 Image Processing on the Python Side 3
2.1 Image creation .3
2.2 Pixel access and image methods .. . 3
2.3 Image views .4
2.4 Special operations for onebit images 5

2.4.1 Combining onebit images . 5
2.4.2 Color highlighting . 6
2.4.3 Projections and runlegths .6
2.4.4 Connected components . 8

Exercises .. . 8

3 Image Processing on the C++ Side 9
3.1 Organizing your code in a toolkit 9
3.2 Writing C++ plugins . 11

3.2.1 Returning images from plugins . 11
3.2.2 Dealing simultaneously with different image types 12

Exercises .. . 13

4 Symbol Recognition 14
4.1 Training .14
4.2 Features and kNN classification 14
4.3 Using the classifier in scripts .. . 15
4.4 Evaluating a classifier .. . 17
Exercises .. . 17

∗This document is available from the Gamera home pagehttp://gamera.sourceforge.net/. It may be freely
copied and distributed under the terms of the Creative Commons Attribution-Share Alike 3.0 Germany license. See
http://creativecommons.org/licenses/by-sa/3.0/de/ for the full text of the license.

1

http://gamera.sourceforge.net/
http://creativecommons.org/licenses/by-sa/3.0/de/

Gamera Tutorial CD

1 Overview

Gamera [1] can be used for a wide variety of tasks, from building complete image recognition systems
down to implementing and evaluating particular algorithms for image processing ordocument layout
analysis. Depending on your goal, you will typically do one of the following:

• usethe Gamera library. This typically means to write Python scripts or -to a lesser extent- to use
the interactive Gamera GUI.

• extendthe Gamera library. This typically means to write a “toolkit”, which can include custom
“plugins” and other stuff.

The Gamera framework uses the following terms in a specific meaning:

Plugin Image processing methods are calledpluginsbecause Gamera uses a general interface for adding
custom image methods. This interface is also used by the built in image methods, sothat even these
methods are technically “plugins”.

Toolkit A toolkit is an optionally installable addon library for Gamera. This can be useful fordistributing
your code or for separating the code of your self written plugins from thecode of the Gamera core
distribution.

Classifier The recognition of individual symbols is done by aclassifier. The term “classifier” stems
from the fact that it takes a symbol and assigns it to a “class” (like “lower case a”).

1.1 Using Gamera

To use Gamera interactively, start it from the command line with the commandgameragui & (the op-
tional final ampersand starts the program in the background so that the current terminal is not blocked
for further input). You can then load an image with “File/Open image...” and operate image processing
routines on the image by right clicking on its icon. Moreover, you can directlyenter Python code in the
Python shell on the right. As all equivalent commands invoked by the right click menu items are echoed
in the right subwindow, this is a simple way to learn how particular methods are called in a Python script.
The most important use case for the GUI is the training of symbols before classification.

In most cases, you may want to write a script that does the processing steps automatically, rather than
doing them all one by one in the interactive GUI. To use the functions provided by Gamera, you must
first import its library in your python script:

from gamera.core import *
init gamera()

Make sure that you do not name your script “gamera.py”! This is an as common pitfall, like the error
almost every C programming novice runs into by naming his first programtest1. An introduction to
working with images in a Python script is given in section 2.

1.2 Extending Gamera

The most common need to extend Gamera is the implementation of additionalplugins. As pixel access
is quite slow from the Python side, this typically requires the implementation of the plugins in C++.

1testis a shell builtin, so the command “test” might do anything but running the program.

2

Gamera Tutorial CD

Moreover, to keep your own code separate from the Gamera core, it is generally a good idea to collect
all of your custom plugins in atoolkit. Both aspects are described in section 3.

2 Image Processing on the Python Side

2.1 Image creation

The image constructor

Image(Point ul, Point lr, pixeltype)

allocates memory and initializes all pixel values to white.ul means the “upper left” (usually(0, 0)) and
lr the “lower right” point.pixeltypecan be one of RGB, GREYSCALE or ONEBIT (default). Example:

create an 11x11 color image

Image(Point(0,0), Point(10,10), RGB)

Note that the alternative constructorImage(otherimage)creates an image of the same size and pixel type
asotherimage, but does not copy its content. To copy an image use the methodimagecopy, e.g.

img2 = img1.image copy()

Important image properties are2

• ncolsandnrows for the number of columns and rows, respectively. This means that0 ≤ x ≤
ncols − 1 and0 ≤ y ≤ nrows − 1.

• data.pixeltypefor the pixel type (RGB, GREYSCALE or ONEBIT)

In most cases, images are not created from scratch, but are loaded from files with theload imagefunction,
e.g.

img = load image("file1.png")

The load imagefunction currently supports PNG and TIFF images. For writing images to files,use the
savePNGandsavetiff image method, e.g.

img.save PNG("file2.png")

2.2 Pixel access and image methods

The value of individual pixels is obtained with the methodget(Point(x,y))or get([x,y]), as in the following
example:

count the number of black pixels in a Onebit image

n = 0

for x in range(img.ncols):

for y in range(img.nrows):

n += img.get([x,y])

Individual pixels can be set with the methodset(Point(x,y), pixelvalue)or set([x,y], pixelvalue). Depend-
ing on the pixel type of the image,pixelvalueis

2On the Python side, these are indeedproperties(and not methods), which means that they are to be used without parenthe-
ses.

3

Gamera Tutorial CD

• 0 or 1 for onebit images (0 = white, 1 = black)

• 0 to 255 for greyscale images (0 = black, 255 = white)

• RGBPixel(r,g,b) with 0 ≤ r, g, b ≤ 255 for RGB color images (r = red value,g = green
value,b = blue value)

Here is an example:

write an 11x11 image with a red point in its center

img = Image(Point(0,0), Point(10,10), RGB)

img.set([5,5], RGBPixel(255,0,0))

img.save PNG("out.png")

All image methods are documented under “Reference/Plugins” in the online documentation. Of partic-
ular interest are the plugins for conversion between the different image types:to greyscale, to rgb, and
to onebit3. The following code reads an image file and converts it to onebit, if necessary:

img = load image("file.png")

if img.data.pixel type != ONEBIT:

img = img.to onebit()

2.3 Image views

Gamera uses a “shared data” model where the same data can be accessedthrough different “views”. This
means that the data typeImageis actually aviewwhere the underlying data can be accessed through its
propertydata(like the propertydata.pixeltypein the previous section). This has a number of advantages:

• images are light weight objects that can even be passed by value

• the same data can be represented differently (e.g., as CC or onebit image)

• subimages can be created and accessed without new memory allocation and copying

Subimages containing a subregion of imageimgare created with

SubImage(Image img, Point ul, Point lr)

whereul means the “upper left” andlr the “lower right” point of the subimage. Important properties of
image views are

• data= the underlying image data

• offsetx, offsety = displacement of origin with respect to the underlying data

How the values of the view and its data can differ is demonstrated in the followingsnapshot from the
Python shell in the Gamera GUI:

>>> img1 = Image(Point(0,0), Point(50,50))

>>> img2 = SubImage(img1, Point(5,5), Point(10,10))

>>> img2.offset x

5

>>> img2.ncols

3Conversion to onebit is a nontrivial task for which a wide variety of algorithms can be used. Theto onebitmethod uses
global Otsu thresholding [3]. If this does not work for your image, try one of the other plugins in the categories “Binarization”
and “Thresholding”. A decent and robust solution for varying illumination isshadingsubtraction.

4

Gamera Tutorial CD

6

>>> img2.data.ncols

51

2.4 Special operations for onebit images

While there are a great number of plugin functions for greyscale and color images, Gamera is particu-
larly suited for dealing with onebit images. This does not mean that the input images need to be onebit
images, but in document analysis the input images are typically binarized at one point and subsequent
operations all work on the resulting onebit images. This section explains a number of important concepts
and functions.

2.4.1 Combining onebit images

Images of the same size can be combined pixelwise:

h(x, y) = f(x, y) ⊗ g(x, y) for all x, y

where⊗ denotes a logical or arithmetic operation. The corresponding plugin functions in Gamera are

• logical operations:and image, or image, andxor image

• arithmetic operations:add images, subtractimages, andmultiply images

The result on two sample images is shown in Fig. 1. Obviously, we have for onebit images thator ≡ add
andand≡ multiply.

When the images are of different size, it is generally undefined how theseimages should be combined.
It is nevertheless possible to combine such images with the following simple trick:

• create a subimage of the larger image at the position that shall be combined with the smaller image

• combine the subimage with the smaller image while setting the optional second parameter in place
= True

let a be a 5x5 image and b a 3x3 image

c = a.subimage(Point(2,2), Point(4,4))

c.xor image(b, in place=True)

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
������
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
����
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
����
��
��

��
��
��

A and B

= 0

A multiply BA xor BA or B A subtract BA add B

= 1

image A image B

Figure 1: Demonstration of pixelwise operations.

5

Gamera Tutorial CD

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���

���
���
������
���
���

���
���
���

��
��
��

��
��
����
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
������

���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

subimage c

c.xor_image(b,True)

image a image b image a

Figure 2: “In place” combination of differently sized images.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

subimage b

image a

rgb.highlight(b,RGBPixel(0,0,255))

Figure 3: Highlighting the black pixels of only a subregion.

When the parameterin place is True, the resulting image is not returned, but is written in the example
above toc, which shares its data witha, so that the original imagea is changed (see Fig. 2). If this is not
what you want, useimagecopybeforehand.

2.4.2 Color highlighting

For visualization purposes, it is often useful to mark by color all pixels of agiven onebit image in a second
different image. This can be done with the RGB image methodhighlight(onebitimage, pixelvalue), as in
the following example:

let a and b be of the same size

mark all pixels red that are black in a, but not in b

c = a.subtract images(b)

rgb = a.to rgb()

rgb.highlight(c, RGBPixel(255,0,0))

highlightalso works with subimages, as in the following example (see Fig. 3):

mark all black pixels in a subregion of image a blue

b = a.subimage(Point(2,2),Point(4,4))

rgb = a.to rgb()

rgb.highlight(b, RGBPixel(0,0,255))

The most important use case of this feature is the highlighting of particular connected components (see
section 2.4.4).

2.4.3 Projections and runlegths

An important tool in document analysis areprojections, that is simply the count of black pixels per row
or column. This “projects” the two dimensional imagef(x, y) onto a one dimensional list of projection
values:

6

Gamera Tutorial CD

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������
���
���

���
���
���

���
���
���

���
���
���

1 2 3

horizontal
white

4 5

2

4

1 2 3

horizontal

2

4

image black

Figure 4: An example image and two of its runlength histograms.

• the image methodprojection rowscomputes the sum over each row, or thehorizontalprojection

phor(y) =
ncols−1∑

x=0

f(x, y)

• projectioncolscomputes the sum over each column, or theverticalprojection

pver(x) =
nrows−1∑

y=0

f(x, y)

Projections can be useful for page segmentation, e.g. to detect the gaps between adjacent text lines.

Another important concept arerunlengths, that is the number of subsequent pixels of the same color.
“Subsequent” means that they are adjacent either in the horizontal or vertical direction. For onebit images,
we have two colors and two directions, resulting in four different type of runlengths: black horizontal,
etc.

When we count the frequency of each runlength in the image, we obtain itsrunlength histogram. Exam-
ples for runlength histograms can be seen in Fig. 4 (make sure you understand this example!). In Gamera,
the code

p = img.run histogram(color, direction)

returns the runlength histogram as a list wherep[n] is the frequency of the runlength ofn pixels.color
can be ”black” or ”white”, anddirectioncan be ”vertical” or ”horizontal”.

There are also methods for removing runlengths below or above a given threshold:

img.filter xxx runs(length, color)

wherecolor can be ”white” or ”black”,lengthis the threshold, andxxxspecifies which runlengths are to
be removed:

• xxx= narrow: remove all horizontal runlength less thanlength

• xxx= short: remove all vertical runlength less thanlength

• xxx= wide: remove all horizontal runlength greater thanlength

• xxx= tall: remove all vertical runlength greater thanlength

Note that all these plugins do not return the result image, but operate directly on the input image.

7

Gamera Tutorial CD

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
������
���
���

���
���
������
���
���

���
���
���

5
5
5
5 5

2 2 2
2
2cc_analysis

Figure 5:cc analysisreplaces the black pixel values with unique labels for each CC.

2.4.4 Connected components

A connected components(CC) is a connected4 set of black pixels. Fig. 5 shows an image with two CCs.
CCs are very important in document analysis because they roughly correspond to characters. The image
methodcc analysisreturns a list of images, each of which is a subimage containing only the individual
CC. Here is a usage example:

remove all CCs from "img" that are smaller than 2x2

additionally create an image "rgb" with the removed CCs marked red

rgb = img.to rgb()

ccs = img.cc analysis()

for c in ccs:

if c.nrows < 3 and c.ncols < 3:

rgb.highlight(c, RGBPixel(255,0,0))

c.fill white() # removes the CC on "img"

The methodcc analysisdoes not only return a list of CCs, but changes the input image by setting the
values of all pixels belonging to the same CC to a uniquelabel. This means that “onebit images” actually
can have other pixel values than 0 and 1. Methods working on onebit images therefore consider all non
zero pixel values as “black”.

The example in Fig. 5 shows why this labeling is necessary. In Gamera, CCs are rectangular subim-
age views (the rectangle is the closestbounding boxaround the CC) which poses problems when the
rectangles of different CCs overlap. The labeling helps to distinguish the pixels belonging to the actual
CC within the bounding box from pixels belonging to other CCs. Therefore,the subimages returned
by cc analysisare not simply of data typeSubimagebut of data typeCc. The typeCc is derived from
Subimageand has an additional propertylabel. When a onebit image method is applied to aCc, it only
affects the pixels with the same value asCc.label.

Exercises for Section 2

Exercise 2.1Write a script that creates a20 × 20 RGB image and writes it to a fileout.png. Draw two
crossing green diagonals into the image,

a) by using only the methodsgetandsetin a loop.

b) by using the plugin functiondraw line (see section “Draw” in the plugin online reference).

Exercise 2.2Write a script that computes the runlength histogram of an image of your choice and writes
it into a control fileruns.datfor the plotting programgnuplot5. The control files must have the
following form:

4Gamera assumes 8-connectivity, that is, each pixel has eight neighbors.
5gnuplotis shipped with all Linux distributions and is also freely available for MacOS X and Windows [4].

8

Gamera Tutorial CD

set xrange [0:30] # optional for setting xrange

plot ’-’ with impulses title ’black horizontal runs’

0 0

1 40

...

e

where the first column is the runlength and the second its frequency. You can then display the plot
with gnuplot -persist runs.dat. Hints:

• Have a look at the methodrunlengthhistogramin the plugin reference. The parameters are
passed as strings.

• To iterate simultaneously over an index and its list value, you can use the Python iterator
enumerate[2].

Extend your script such that it accepts command line parameters determining whether black/white
or horizontal/vertical runs shall be counted (look for theargvvariable in [2]).

Exercise 2.3Write a script that measures the most frequent black vertical runlength ofan image (see the
section “Runlength” in the plugin reference of the Gamera online doc) and creates an RGB image
with all black vertical runs of the most frequent runlength marked in red.

Hints: You must try to create an image that only contains the runlengths that are to be marked,
so that you can usehighlight to mark them. All black vertical runlengths of lengthn are obtained
by subtracting all runlengths smaller thann (filter tall runs) and all runlegths greater thann (fil-
ter short runs). Beware that these methods work in place on the image. This means that you must
copy the image beforehand (imagecopy).

Apply your script to a music score. What do you observe?

Exercise 2.4Do acc analysison an image and list all used labels in sorted order. Are the labels consec-
utive or are there gaps?

Hint: You can read out all labels elegantly via a Python “list comprehension” [2]:

labels = [c.label for c in ccs]

3 Image Processing on the C++ Side

When you write custom image methods that access individual pixels, it is a good idea to implement them
in C++ rather than Python for performance reasons. While it is theoreticallypossible to directly add your
code to the core code of Gamera, it is much more reasonable to collect your own plugins in atoolkit.
This does not only reduce the compilation time for your plugins considerably,but it also lets you keep
your code independent from the Gamera core code.

3.1 Organizing your code in a toolkit

A first introduction to Gamera toolkits is the HowTo “Writing Gamera toolkits” in the Gamera online
documentation. To get started with writing plugins, do the following:

• Download the skeleton toolkit, unpack it and rename it to a name of your choice(let us assume
that this name bemyplugins):

9

Gamera Tutorial CD

tar xzf skeleton-version.tar.gz

mv skeleton-version myplugins

cd myplugins

python rename.py myplugins

Hereversionstands for the version number of the skeleton toolkit. If you choose a different name
for your toolkit, make sure that your name is a valid Python identifier; in particular it may not
contain hyphens or dots!

• Change the category of the demo pluginclear in the file

gamera/toolkits/myplugins/plugins/clear.py

from “Draw” to something different, e.g. “My Plugins”. This defines the section of the plugin in
the image right click menu of the Gamera GUI.

• Compile and install the toolkit with

python setup.py build && sudo python setup.py install

When compiling the toolkit under Windows, make sure that you use the same compiler that was
used for building Gamera. To this end, it is generally necessary to compile and install Gamera from
the sources and not to rely on a Gamera binary install!

To have access to plugins defined in your toolkit in the Gamera GUI, you mustimport it over the “Toolk-
its” main menu ingameragui. To have access to your plugins in a script, import your toolkit with6

from gamera.toolkits.myplugins import *

In Python lingo, a Gamera toolkit is not a module, but apackage, i.e. a collection of python modules.
This means that the above statement does nothing but to execute the fileinit .py in the directorygam-
era.toolkits.myplugins. There are different ways to let this actually load the plugins defined in yourtoolkit
(see [2]). The skeleton toolkit does this by directly importing the moduleclear.pywith the following line
in gamera/toolkits/myplugins/init .py

from gamera.toolkits.myplugins.plugins import clear

An alternative method is as follows. Let us assume you have written some plugins in the filegam-
era.toolkits.myplugins/plugins/bla.py. To import them all automatically with the import of your toolkit,
do the following:

• Replace the above line ingamera/toolkits/myplugins/init .pywith

import plugins

This loads the file init .py in the subdirectoryplugins.

• In the latter fileplugins/ init .py, a plugin module namedbla.pycan be loaded with

import bla

This will load all image methods defined in the module, but no free functions thatare not image
methods. If you also want to load them by default, use the following line instead:

from bla import *

6Alternatively, you can of course directly import only specific plugin functions from your toolkit with the usual Python
ways for importing modules. This includes the possibility to import plugins into adifferent than the public namespace. See
your Python documentation for details, e.g. the chapter “Modules and Packages” in [2].

10

Gamera Tutorial CD

3.2 Writing C++ plugins

The definitive guide for writing your own C++ plugins are the HowTos “Writing Gamera plugins”,
“Specifying arguments for plugin generation” and “The Gamera C++ ImageAPI” in the Gamera online
documentation. The best way to start learning writing plugins is by reading these HowTos!

To get a safe base from which to start, try to copy the example pluginvolumefrom the HowTo “Writing
Gamera plugins” into your toolkit:

• Create the filesexample.pyandexample.hppat the appropriate locations in your toolkit and copy
the code from the HowTo therein.
Beware:To avoid unnecessary trouble, rename the plugin function from “volume” to“countvol-
ume” in both files, because otherwise it conflicts with thevolumeplugin of the Gamera core!

• Make sure that the new moduleexample.pyis imported in init .py, as described in the preceding
section.

• Compile your toolkit again and install it with

python setup.py build && sudo python setup.py install

• Test your toolkit with the following simple script (the result should be around0.09):

from gamera.core import *
init gamera()

from gamera.toolkits.myplugins import *

img = Image(Point(0,0), Point(9,9))

img.draw filled rect(Point(3,3), Point(5,5), 1)

print img.countvolume()

The code for this simple plugincountvolumealready shows a number of peculiarities of C++ plugins:

• What is an imagepropertyon the Python side, is typically amethodon the C++ side (see e.g.
ncols).

• On the C++ size the image data type is templatized. The data type(s) is (are) specified instead in
the Python wrapper file in the parameterself type.

The heavy use of templates can lead to very weird error messages during compilation, so make sure that
you first get the interface of a new plugin right by compiling a dummy implementationwith the planned
interface, before you fill your new plugin with algorithmic content.

3.2.1 Returning images from plugins

While the above example plugin poses no problem because the managing of theimage types is done by
the Gamera interface, it gets more intricate when you want to return an image, which means that you
must yourself create an image in your code with a data type that matches the Gamera interface.

You must always return the imageviewand never the underlyingdata. Once the image view is returned,
Python takes care of the memory management with its garbage collection. If youneed temporary images
in your plugin that are not returned to Python, make sure that you delete them, both data and view.

In the simplest case, you want to return an image of the same type as the input image. This can be done
with the “ImageFactories” described in the HowTo “The Gamera C++ Image API” as follows:

11

Gamera Tutorial CD

template<class T>

Image* myplugin(const T &src) {

typedef typename ImageFactory<T>::data type data type;

typedef typename ImageFactory<T>::view type view type;

data type* dest data = new data type(src.size(), src.origin());

view type* dest = new view type(*dest data);

// ...

return dest;

}

If you need to always return a specific data type independent from the input image, you can create it as
follows (in this example we create a onebit image):

template<class T>

OneBitImageView* myplugin(const T &src) {

OneBitImageData* dest data =

new OneBitImageData(src.size(),src.origin());

OneBitImageView* dest =

new OneBitImageView(*dest data,src.origin(),src.size()

// ...

return dest;

}

3.2.2 Dealing simultaneously with different image types

C++ plugin functions are template functions, which means that the same functionis generated at com-
pile time for all images types specified in the Python interface of your plugin. There are a number of
techniques for making your code work simultaneously with different data types:

• The pixel value type of the generic image typeT of your plugin is given by

typedef typename T::value type value type;

• The particular values for white and black (note that 0 is white for onebit images, but black for
greyscale images) can be obtained withwhite(img)andblack(img)whereimg is an image view of
the data type in question. Moreover, you can check whether a pixel valueis black or white with
is blackor is white, respectively.

• For storing arithmetic combinations of pixel values, you can use the templateNumericTraits:

typedef typename T::value type value type;

typedef typename NumericTraits<value type>::Promote sum type;

typedef typename NumericTraits<value type>::RealPromote avg type;

In this example,sumtypecan hold sums of pixel values andavg typecan holdsumtypes multi-
plied with a floating point number.

Unlike on the Python side, there isno wayto query the pixel type of an image on the C++ side7. There-
fore, template specialization8 is the way of choice for implementing algorithms that need to distinguish
between different image types. Suppose you want implement a plugin that returns an image of the same

7See M. Droettboom’s emails to the Gamera mailing list from 2004/11/15 for a detailed discussion of this problem [5].
8For an introduction totemplate specialization, see e.g. [6].

12

Gamera Tutorial CD

type as the input image and works the same on onebit and greyscale images, but needs different code on
color images. This can be done as follows:

// generic version for ONEBIT and GREYSCALE

template<class T>

Image* spectest(const T &src) {

typedef typename ImageFactory<T>::data type data type;

typedef typename ImageFactory<T>::view type view type;

data type* dest data = new data type(src.size(), src.origin());

view type* dest = new view type(*dest data);

// ...

return dest;

}

// specialized version for RGB images

template<>

Image* spectest(const RGBImageView &src) {

RGBImageData* dest data =

new RGBImageData(src.size(),src.origin());

RGBImageView* dest =

new RGBImageView(*dest data,src.origin(),src.size());

// ...

return dest;

}

Exercises for Section 3

Exercise 3.1Write a C++ plugin that flips every second white pixel of a onebit image to black.

• Call the pluginflip1 and let it change the input image.

• Call the pluginflip2 and let it return the resulting image.

Exercise 3.2Write two variants of the pluginflip2of the previous exercise that both access the individual
pixels with get(Point(x,y))andset in a loop overx and andy. One variant shall have thex-loop
outside and one they-loop.

Show by measuring the runtimes of both variants that it is always better in Gamera to have the
outer loop vary overy and the inner loop overx. You can measure the runtime as follows:

import time

t = time.time()

res = img.flip2()

t = time.time() - t

print ("Runtime: %f" % t)

Exercise 3.3Write a C++ plugin that replaces the pixel value at position(x, y) with the average over
positionsx − 1 to x + 1. In other words, an imagef(x, y) shall be transformed to

g(x, y) =
1

3

+1∑

i=−1

f(x + i, y)

13

Gamera Tutorial CD

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

Training

Result

xml

Classifier
Images

Figure 6: Before symbols can be recognized, a training database has to be created from sample images.

The result shall be returned as a greyscale image. Find a solution for the problem that the values
for white and black are exchanged in onebit and greyscale images. Hints:

• The solution consists either in the use of template specialization or a (slightly) tricky utiliza-
tion of the functionsblackandwhite.

• UseNumericTraitsfor computing the average.

• Make sure that the sum does not go beyond the image borders. Why is it better to take care of
the borders in the range of the for-loops rather than doing a range check inside the for-loops?

4 Symbol Recognition

Symbol recognition in Gamera is a two stage operation (see Fig. 6):

a) First you must take some sample images and assign “classes” manually to the occurring symbols.
This stage is calledtraining. The result of this step is atraining database, which is stored in an
XML file.

b) The sample images in the training database are then used by Gamera’s classifier to actually classify
symbols passed to it.

The training step is only done once, and the resulting training database can then be used to recognize an
arbitrary number of images.

4.1 Training

Training is done over the Gamera GUI and is described exhaustively in the HowTo “Training Tutorial”
of the Gamera online documentation. The only tricky part is how to specify broken glyphs as a single
symbol, be it deliberately broken characters like lower case “i”, or randomly broken characters due to
low print or scan quality. For these symbols, the prefix “_group.” must be added to the class name.
They will then be stored in the training database as a combined image with a class name not carrying the
“_group.” prefix.

4.2 Features and kNN classification

Symbols are differentiated by means offeatures. Consider for instance the characters lower case “a” and
“b”: these have a different aspect ratio, so the real numberaspectratio can be used for classifying un-
known symbols as either “a” or “b”. Features are implemented in Gamera as plugins and are documented
in the reference “Plugins/Features” in the online documentation. All features, even those consisting of a

14

Gamera Tutorial CD

feature 1

fe
a

tu
re

 2 training samples of
two different classes

Figure 7: ThekNN classifier assigns an un-
known point in feature space to the majority
class among itsk nearest neighbors.

single value likeaspectratio, return a floating point vector. So you can query the aspect ratio of a CC
with cc.aspectratio()[0] .

The computation of features from a symbol maps the symbol to a point infeature space. Theclassifier
then assigns a point in feature space to a specificclass, thereby utilizing the training database. The most
important classification technique built into Gamera is thekNN classifier, where “kNN” stands for “k
nearest neighbor” [7].

The principle of the kNN classifier is shown in Fig. 7. The red crosses andblue pluses denote the feature
space points of training symbols belonging to two different classes. The back circle denotes the feature
space point of an unknown symbol. Fork = 3, it is assigned to the class of the red crosses, because
among itsk = 3 nearest neighbors the majority are red crosses.

During classification, you can choose two parameters: the parameterk in thekNNclassifier, and the set
of features. The choice ofk depends on the minimum number of training samples you have for each
class. [7] gives some rules of thumb, but in most practical cases this boils down tok = 1, unless you
have an abundant amount of traing data.

Concerning the set of features, the combinationaspectratio, moments, volume64regions, and
nrows featurehas turned out to yield good results for different printed documents in two recent studies
([8], [9]), both with regard to the holdout error rate and a cross correlation error estimate9. The “Clas-
sifier optimization” described in the HowTo “The Gamera GUI” in the Gamera online documentation is
an alternative interesting method to let an automatic algorithm figure out the bestfeature set on his own,
based only on the training data.

4.3 Using the classifier in scripts

For symbol recognition, you can use the classkNNNonInteractive, which is defined in the moduleknn.
This module is not loaded by the Gamera core, so that you must load it explicitly with

from gamera import knn

The classkNNNonInteractiveis described in details in the HowTo “Gamera classifier API” in the Gamera
online documentation. To create a kNN classifier, use

cknn = knn.kNNNonInteractive([],

["aspect ratio","moments","volume64regions","nrows feature"],

0,normalize=True)

where the second argument is the list of features. Alternatively, you canlater set the features with the
methodchangefeatureset. To swith on and off individual components of each feature, you can addi-

9In case you are interested in the technical definition of different error estimates, you can find them explained in [7].

15

Gamera Tutorial CD

tionally use the functionset selectionsby feature. The valuek defaults to one and is accessible through
the propertynumk. A training data file (e.g.data.xml) can be read with the method

cknn.from xml filename("data.xml")

If you have a list of images like the list returned bycc analysis, you can classify all images from the list
imagelistwith

cknn.classify list automatic(imagelist)

For each symbol fromimagelist, all classes found among itsk neighbors in feature space are stored
in the propertyid nameof the image. The classes are stored as tuples(confidence, classname), where
classnameis the actual class andconfidenceis some measure for the distance in feature space that can
generally be ignored for classification (for more information about confidence computation in Gamera
and what it can be used for, see [10]).

The most frequent class among thek nearest neighbors can be queried with the image method
get main id, which simply returnsid name[0][1]. Here is a simple use case:

ccs = image.cc analysis()

cknn.classify list automatic(ccs)

for c in ccs:

if c.match id name(".*lower.*"): # regex matching

print ("lower case letter %s" % c.get main id())

You can also classify symbols without a classifier withclassifyheuristic. This can be useful when some
symbols shall be classified by decision rules rather than statistical training data, as in the following
example:

for c in ccs:

if c.ncols < 5 and c.nrows > 20:

c.classify heuristic("vertical line")

classifylist automaticis only useful when the segmentation of the symbols worked well, because it
classifies each symbol individually. When you have deliberately or randomly broken symbols, it is more
useful to usegroup list automatic, which automatically tries to join broken characters with the algorithm
described in [11].

The kNNNonInteractivemethodgroup list automaticdoes not change the input image list, but instead
returns the information which symbols are to be merged in two lists(add, remove). You must then use
this information to update the image list, theoretically. Practically, there is a convenience function that
already does this:group and updatelist automaticreturns the already updated list of images. It is called

classifiedimgs = cknn.group and update list automatic(imglist, \

grouping function, max parts per group=3)

where grouping function controls whether two symbols are to be considered as candidates for be-
longing to the same group. It can beShapedGroupingFunction(maxdistance)or BasicGroupingFunc-
tion(maxdistance), which are defined in the modulegamera.classify. The grouping algorithm checks a
graph of grouping hypotheses, which has an exponential worst caseruntime. You therefore should choose
small values both formaxdistanceandmaxparts per group.

16

Gamera Tutorial CD

4.4 Evaluating a classifier

To evaluate how good a classifier recognizes unknown symbols you can segment an image, load it into
the classifier GUI and select the menu “Classifier/Guess all” oder “Classifier/Group and guess all”. To
inspect the classification result of a script, you can save the classified glyphs in your script to an XML
file with glyphsto xml, e.g.

result = cknn.group and update list automatic(ccs, \

grouping function=BoundingBoxGroupingFunction(4), \

max parts per group=3)

gamera xml.glyphs to xml("knn-results.xml",result,False)

To inspect the written XML file, you can load it as “page glyphs” into the classifier GUI (menu “File/Page
glyphs/Open glyphs into page editor”).

The methodevaluate()for kNN classifiers is an alternative option to automatically evaluate the classifier
on the training data alone with the “leave-one-out” method, also known as “n-fold cross-validation” [7].
It returns the recognition rate and is very useful for automatically optimizing certain parameters likek or
the chosen feature set.

Exercises for Section 4

Exercise 4.1Write on a sheet of paper 20 instances of one character (e.g. “a”), and on a second paper
20 instances of a different character (e.g. “b”). Make sure that all characters are a single CC (for
easy segmentation withcc analysis) and scan both pages to a raster image.

Plot the distribution of all of your symbols in a two dimensional feature space as follows:

• segment both images into CCs withcc analysis

• read for each CC two feature values of your choice, e.g.

feature1 = c.aspect ratio()[0]

feature2 = c.moments()[2]

• write aGnuplotcontrol fileplot.datof the form

plot ’-’ with points title ’a’, ’-’ with points title ’b’

feature values class a

0.7692 0.1315

...

e

feature values class b

1.3421 2.9872

...

e

• display the plot with the commandgnuplot -persist plot.dat

Exercise 4.2Use the two images from the preceding exercise to create a training dataset containing five
from each of your two characters. Write a script that uses this training dataset to recognize all
characters from both images with akNNNonInteractiveclassifier.

17

Gamera Tutorial CD

Try different sets of features and values ofk and measure the recognition rates for both characters
(recogniton rate = number of correctly classified symbols divided by the total number of symbols).

Hint: How a training dataset is built fromseveralimages can be learnt in the section “On to the
second page” of the “Training tutorial” in the Gamera online documentation.

Exercise 4.3Create a training set from all your handwritten glyphs and use the methodevaluateto find
out theindividual feature leading to the best recognition rate.

Hint: To change the feature set, use the kNNNonInteractive-methodchangefeatureset.

References

[1] M. Droettboom, C. Dalitz:The Gamera Homepage.(2008-2009)
http://gamera.informatik.hsnr.de/

[2] D.M. Beazley:Python Essential Reference.Sams Publishing (third ed., 2006)

[3] N. Otsu:A threshold selection method from grey level histograms.IEEE Transactions on Systems,
Man, and Cybernetics, vol. 9, pp. 62-66 (1979)

[4] T. Williams, C. Kelly et al.:Gnuplot version 4.2(2007). Freely available from
http://www.gnuplot.info/

[5] Yahoo! Groups:gamera-devel Message History.(2004-2009)
http://tech.groups.yahoo.com/group/gamera-devel/

[6] B. Stroustrup:The C++ Programming Language.Addison-Wesley (third ed., 1997)

[7] A. Webb:Statistical Pattern Recognition.Wiley-Interscience (second ed., 2002)

[8] C. Dalitz, T. Karsten:Using the Gamera Framework for building a Lute Tablature Recognition
System.Proceedings ISMIR 2005, pp. 478-481, 2005

[9] C. Dalitz, G.K. Michalakis, C. Pranzas:Optical Recognition of Psaltic Byzantine Chant Notation.
International Journal of Document Analysis and Recognition, vol. 11, pp. 143-158 (2008)

[10] C. Dalitz:Reject Options and Confidence Measures for kNN Classifiers.In C. Dalitz (Ed.):
“Document Image Analysis with the Gamera Framework.” Schriftenreihe desFachbereichs
Elektrotechnik und Informatik, Hochschule Niederrhein, vol. 8, pp. 16-38, Shaker Verlag (2009)

[11] M. Droettboom:Correcting broken characters in the recognition of historical printed documents.
Joint Conference on Digital Libraries (JCDL’03), pp. 364-366 (2003)

18

http://gamera.informatik.hsnr.de/
http://www.gnuplot.info/
http://tech.groups.yahoo.com/group/gamera-devel/

	Overview
	Using Gamera
	Extending Gamera

	Image Processing on the Python Side
	Image creation
	Pixel access and image methods
	Image views
	Special operations for onebit images
	Combining onebit images
	Color highlighting
	Projections and runlegths
	Connected components

	Exercises

	Image Processing on the C++ Side
	Organizing your code in a toolkit
	Writing C++ plugins
	Returning images from plugins
	Dealing simultaneously with different image types

	Exercises

	Symbol Recognition
	Training
	Features and kNN classification
	Using the classifier in scripts
	Evaluating a classifier
	Exercises

