A Tutorial Introduction to the Gamera Framewbrk

Christoph Dalitz
Hochschule Niederrhein, Fachbereich Elektrotechnik uriokimatik
Reinarzstr. 49, 47805 Krefeld, Germany

Version 1.5, 20. Nov 2012

Abstract

The Gamera frameworlks a Python library for building custom applications for datent analysis
and recognition. Additionally, it allows for custom exténss. While its online documentation is an
indispensable reference manual when working with Gamelagamner usually has trouble finding
his or her way through it. This tutorial hopes to bridge thp bg providing a kind of terse text book
on Gamera including exercises explaining the most commeksta

Contents
1 Overview 2
1.1 Using GAMEIA .« o o e e e 2
1.2 Extending Gamera oo 2
2 Image Processing on the Python Side 3
2.1 Imagecreation e e 3
2.2 Pixel access and image methods oo 3
23 Imageviews e e e e e e A
2.4 Special operations for onebit imanes 5
2.4.1 Combining onebit imades
2.4.2 Colorhighlighting e 6
2.4.3 Projections and runlegths oo 6
2.4.4 Connected compondnts
EXEICISES .« o o oo oo 8
3 Image Processing on the C++ Side 9
3.1 Organizingyourcodeinatoolkit 9
3.2 Writing C++plugins e e e e e e e e e 11
3.2.1 Returningimages fromplugins. 11
3.2.2 Dealing simultaneously with differentimagetypes 2 1
’?erci;‘s ... 13
4 Symbol Recognition 14
4.1 Trainin&; .. 14
4.2 Features and KNN classification 14
4.3 Usingtheclassifierinscripts 15
4.4 Evaluatingaclassifier 17
EXEICISES .« « o o o e o e e 17

*This document is available from the Gamera home pagep: / / ganer a. sour cef or ge. net/ . It may be freely
copied and distributed under the terms of the Creative Commons AttribBtiane Alike 3.0 Germany license. See
http://creativeconmons. org/licenses/by-sal 3. 0/ de/ for the full text of the license.

http://gamera.sourceforge.net/
http://creativecommons.org/licenses/by-sa/3.0/de/

Gamera Tutorial CD

1 Overview

Gamera [1] can be used for a wide variety of tasks, from building completgeimecognition systems
down to implementing and evaluating particular algorithms for image processidgooiment layout
analysis. Depending on your goal, you will typically do one of the following:

e usethe Gamera library. This typically means to write Python scripts or -to a lessamtexo use
the interactive Gamera GUI.

e extendthe Gamera library. This typically means to write a “toolkit”, which can includeams
“plugins” and other stuff.

The Gamera framework uses the following terms in a specific meaning:

Plugin Image processing methods are calpdubinsbecause Gamera uses a general interface for adding
custom image methods. This interface is also used by the built in image methtus, egen these
methods are technically “plugins”.

Toolkit A toolkitis an optionally installable addon library for Gamera. This can be usefdistibuting
your code or for separating the code of your self written plugins fronctige of the Gamera core
distribution.

Classifier The recognition of individual symbols is done byckassifier The term “classifier” stems
from the fact that it takes a symbol and assigns it to a “class” (like “lowse@”).

1.1 Using Gamera

To use Gamera interactively, start it from the command line with the commameragui & (the op-
tional final ampersand starts the program in the background so thatttemtcterminal is not blocked
for further input). You can then load an image with “File/Open image...” andadpémage processing
routines on the image by right clicking on its icon. Moreover, you can direxitgr Python code in the
Python shell on the right. As all equivalent commands invoked by the rigktmenu items are echoed
in the right subwindow, this is a simple way to learn how particular methods leel @aa Python script.
The most important use case for the GUI is the training of symbols beforgfadaton.

In most cases, you may want to write a script that does the processirsgastEpnatically, rather than
doing them all one by one in the interactive GUI. To use the functions pedviiy Gamera, you must
first import its library in your python script:

from ganera.core inport =*
i nit_ganera()

Make sure that you do not name your script “gamera.py”! This is an asran pitfall, like the error
almost every C programming novice runs into by naming his first progmﬂ% An introduction to
working with images in a Python script is given in section 2.

1.2 Extending Gamera

The most common need to extend Gamera is the implementation of addjilagais As pixel access
is quite slow from the Python side, this typically requires the implementation of thggnglin C++.

ltestis a shell builtin, so the command “test” might do anything but running thgraro.

Gamera Tutorial CD

Moreover, to keep your own code separate from the Gamera core @héraly a good idea to collect
all of your custom plugins in #olkit. Both aspects are described in section 3.

2 Image Processing on the Python Side

2.1 Image creation

The image constructor
| mmge(Point ul, Point Ir, pixeltype)

allocates memory and initializes all pixel values to whitemeans the “upper left” (usuall§p, 0)) and
Ir the “lower right” point.pixeltypecan be one of RGB, GREYSCALE or ONEBIT (default). Example:

create an 11x11 col or image
| mage(Poi nt (0, 0), Point(10,10), RGB)

Note that the alternative constructarage(otherimagejreates an image of the same size and pixel type
asotherimagebut does not copy its content. To copy an image use the méathegk copy, e.g.

i mg2 = ingl.i mage_copy()
Important image properties gre

¢ ncolsand nrowsfor the number of columns and rows, respectively. This meansOthatx <
neols — 1 and0 < y < nrows — 1.

o data.pixeltypefor the pixel type (RGB, GREYSCALE or ONEBIT)

In most cases, images are not created from scratch, but are loadefiés with thdoad_ imagefunction,
e.g.
img = |l oad.i mage("filel.png")

Theload.imagefunction currently supports PNG and TIFF images. For writing images to fiksthe
savePNG andsavetiff image method, e.g.

i mg. save PNG("fil e2.png")

2.2 Pixel access and image methods

The value of individual pixels is obtained with the mettged(Point(x,y)pr get([x,y]), as in the following
example:

count the nunber of black pixels in a Onebit inage
n =20
for x in range(ing.ncols):
for y in range(ing.nrows):
n += ing.get([x,y])

Individual pixels can be set with the methselt(Point(x,y), pixelvalugr set([x,y], pixelvalue)Depend-
ing on the pixel type of the imagejxelvalueis

20n the Python side, these are ind@eoperties(and not methods), which means that they are to be used without parenth
ses.

Gamera Tutorial CD

e 0 or 1 for onebit images (0 = white, 1 = black)
e 0to 255 for greyscale images (0 = black, 255 = white)

e RABPi xel (r, g, b) with0 < r,g,b < 255 for RGB color images(= red value,g = green
value,b = blue value)

Here is an example:

wite an 11x11 inage with a red point in its center
img = I mage(Point(0,0), Point(10,10), RGB)

i ng.set([5,5], RGBPixel (255,0,0))

i mg. save_PNGE "out . png")

All image methods are documented under “Reference/Plugins” in the onlmerdmtation. Of partic-
ular interest are the plugins for conversion between the different impgs:tp_greyscaleto_rgb, and
to,onebiE. The following code reads an image file and converts it to onebit, if negessa

img = |l oad.i mage("file.png")
if ing.data. pixel type != ONEBIT:
img = ing.to_onebit()

2.3 Image views

Gamera uses a “shared data” model where the same data can be attuessgddifferent “views”. This
means that the data typmageis actually aviewwhere the underlying data can be accessed through its
propertydata(like the propertydata.pixeltypein the previous section). This has a number of advantages:

e images are light weight objects that can even be passed by value
e the same data can be represented differently (e.g., as CC or onebit image)
e subimages can be created and accessed without new memory allocatiapging) c
Subimages containing a subregion of imagg are created with
Subl mage(I mage ing, Point ul, Point Ir)

whereul means the “upper left” anld the “lower right” point of the subimage. Important properties of
image views are

e data=the underlying image data
¢ Offsetx, offsety = displacement of origin with respect to the underlying data

How the values of the view and its data can differ is demonstrated in the follosviagshot from the
Python shell in the Gamera GUI:

>>> jngl = | mage(Poi nt (0,0), Point(50,50))

>>> jng2 = Subl mage(ingl, Point(5,5), Point(10,10))
>>> jng2. of f set x

5

>>> | ng2. ncol s

3Conversion to onebit is a nontrivial task for which a wide variety of algarittan be used. The_onebitmethod uses
global Otsu thresholding [3]. If this does not work for your image, tng of the other plugins in the categories “Binarization”
and “Thresholding”. A decent and robust solution for varying illuminai®shadingsubtraction

Gamera Tutorial CD

6
>>> j ng2. dat a. ncol s
51

2.4 Special operations for onebit images

While there are a great number of plugin functions for greyscale and cobges, Gamera is particu-
larly suited for dealing with onebit images. This does not mean that the inpuesmazed to be onebit
images, but in document analysis the input images are typically binarized qtadnt and subsequent
operations all work on the resulting onebit images. This section explainmberwof important concepts
and functions.

2.4.1 Combining onebit images

Images of the same size can be combined pixelwise:
h(z,y) = f(z,y) ® g(z,y) forall z,y
where® denotes a logical or arithmetic operation. The corresponding plugin fursdticGamera are
¢ |ogical operationsand.image or_image andxor_image
e arithmetic operationsadd.images subtractimages andmultiply_.images

The result on two sample images is shown in Fig. 1. Obviously, we have éfitdimages thabvr = add
andand = multiply.

When the images are of different size, it is generally undefined how thesges should be combined.
It is nevertheless possible to combine such images with the following simple trick:

e create a subimage of the larger image at the position that shall be combinedensthdher image

e combine the subimage with the smaller image while setting the optional second parianpddee
=True

let a be a 5x5 inmage and b a 3x3 i nage
c = a.subimge(Point(2,2), Point(4,4))
c. xor _i mage(b, in_place=True)

image A image B

Y
I 1

Aand B AorB A xor B A add B A subtract BA multiply B

Figure 1: Demonstration of pixelwise operations.

Gamera Tutorial CD

image a image b image a

c.xor_image(b,Trueg

subimage c

Figure 2: “In place” combination of differently sized images.

image a

rgb.highlight(b,RGBPixel(0,0,255))
—

subimage b

Figure 3: Highlighting the black pixels of only a subregion.

When the parameten_placeis True, the resulting image is not returned, but is written in the example
above toc, which shares its data with so that the original imageis changed (see Fig. 2). If this is not
what you want, usemagecopybeforehand.

2.4.2 Color highlighting

For visualization purposes, it is often useful to mark by color all pixelsgif@n onebit image in a second
different image. This can be done with the RGB image methighlight(onebitimage, pixelvalugds in
the following example:

let a and b be of the same size

mark all pixels red that are black in a, but not inb
c = a.subtract .i rages(b)

rgb = a.to_rgb()

rgb. highlight(c, RGBPi xel (255, 0, 0))

highlightalso works with subimages, as in the following example (see Fig. 3):

mark all black pixels in a subregion of image a blue
b = a.subi mage(Poi nt (2, 2), Point(4,4))

rgb = a.to_rgb()

rgb. hi ghli ght (b, RGBPi xel (0, 0, 255))

The most important use case of this feature is the highlighting of particulaxected components (see

section 2.4.4).

2.4.3 Projections and runlegths

An important tool in document analysis grmjections that is simply the count of black pixels per row
or column. This “projects” the two dimensional imagér, y) onto a one dimensional list of projection
values:

Gamera Tutorial CD

4 4
2
123 12345
image black white
horizontal horizontal

Figure 4: An example image and two of its runlength histograms.

¢ the image methogrojectionrowscomputes the sum over each row, or bimgizontalprojection

ncols—1

phor(y) = Z f(357y)
x=0

e projectioncolscomputes the sum over each column, ontbgical projection

nrows—1

pver(z) = Z f(xa y)
y=0

Projections can be useful for page segmentation, e.g. to detect theegeygeb adjacent text lines.

Another important concept arenlengths that is the number of subsequent pixels of the same color.
“Subsequent” means that they are adjacent either in the horizontaktimaveirection. For onebitimages,
we have two colors and two directions, resulting in four different typeuafengths: black horizontal,
etc.

When we count the frequency of each runlength in the image, we obtaimiength histogrameExam-
ples for runlength histograms can be seen in/Fig. 4 (make sure you tamtktisis example!). In Gamera,
the code

p = ing.run_histogranm(color, direction)

returns the runlength histogram as a list whglrg is the frequency of the runlength efpixels. color
can be "black” or "white”, andlirectioncan be "vertical” or "horizontal”.

There are also methods for removing runlengths below or above a greshtid:
img.filter xxx_runs(length, color)

wherecolor can be "white” or "black” lengthis the threshold, angxx specifies which runlengths are to
be removed:

xXx= narrow: remove all horizontal runlength less thangth

xxx= short: remove all vertical runlength less tHangth

e xxx=wide: remove all horizontal runlength greater thamgth

xxx= tall: remove all vertical runlength greater thi@mgth

Note that all these plugins do not return the result image, but operatéiylmache input image.

Gamera Tutorial CD

cc_analysis
—_—

NI NN

Figure 5:cc_analysisreplaces the black pixel values with unique labels for each CC.

2.4.4 Connected components

A connected componentSC) is a connectéset of black pixels. Fig./5 shows an image with two CCs.
CCs are very important in document analysis because they roughlygpon@ to characters. The image
methodcc analysisreturns a list of images, each of which is a subimage containing only the individ

CC. Here is a usage example:

renmove all CCs from"ing" that are snaller than 2x2
additionally create an image "rgb" with the renoved CCs marked red
rgb = ing.torgb()
ccs = inyg.cc.anal ysi s()
for ¢ in ccs:
if c.nrows < 3 and c.ncols < 3:
rgb. hi ghli ght (c, RGBPi xel (255, 0,0))
c.fill white() # renmoves the CC on "ing"

The methodcc_analysisdoes not only return a list of CCs, but changes the input image by setting the
values of all pixels belonging to the same CC to a uniabel. This means that “onebit images” actually
can have other pixel values than 0 and 1. Methods working on onebit giihgeefore consider all non
zero pixel values as “black”.

The example in Fig. 5 shows why this labeling is necessary. In Gamera, €Gsaangular subim-
age views (the rectangle is the closbstinding boxaround the CC) which poses problems when the
rectangles of different CCs overlap. The labeling helps to distinguishixe¢ésgelonging to the actual
CC within the bounding box from pixels belonging to other CCs. Therefiie subimages returned
by cc_analysisare not simply of data typ8ubimagebut of data typeCc. The typeCcis derived from
Subimageand has an additional propetabel. When a onebit image method is applied t€@ it only
affects the pixels with the same valueGslabel

Exercises for Section 2
Exercise 2.1 Write a script that creates2d x 20 RGB image and writes it to a fileut.png Draw two
crossing green diagonals into the image,
a) by using only the methodgetandsetin a loop.
b) by using the plugin functiodraw._line (see section “Draw” in the plugin online reference).

Exercise 2.2 Write a script that computes the runlength histogram of an image of yourechoatwrites
it into a control fileruns.datfor the plotting prograngnupldﬁ. The control files must have the
following form:

4Gamera assumes 8-connectivity, that is, each pixel has eight neighbo
Sgnuplotis shipped with all Linux distributions and is also freely available for MacO$1% Windows|[4].

Gamera Tutorial CD

set xrange [0: 30] # optional for setting xrange
plot -’ with inpulses title 'black horizontal runs’
00

1 40

e

where the first column is the runlength and the second its frequency.arothen display the plot
with gnuplot -persist runs.daHints:

e Have a look at the methadinlengthhistogramin the plugin reference. The parameters are
passed as strings.

e To iterate simultaneously over an index and its list value, you can use thenPiygnator
enumeratg2].

Extend your script such that it accepts command line parameters determimétigawblack/white
or horizontal/vertical runs shall be counted (look for #rgv variable in [2]).

Exercise 2.3 Write a script that measures the most frequent black vertical runlengthiofage (see the
section “Runlength” in the plugin reference of the Gamera online doc) madas an RGB image
with all black vertical runs of the most frequent runlength marked in red.

Hints: You must try to create an image that only contains the runlengths that are torkedmna
so that you can udeighlightto mark them. All black vertical runlengths of lengthare obtained

by subtracting all runlengths smaller thar{filter_tall_runs) and all runlegths greater than(fil-
ter_shortruns). Beware that these methods work in place on the image. This means that gpbu mu
copy the image beforehanuinage copy).

Apply your script to a music score. What do you observe?

Exercise 2.4 Do acc_analysison an image and list all used labels in sorted order. Are the labels consec-
utive or are there gaps?

Hint: You can read out all labels elegantly via a Python “list comprehension” [2]

| abels = [c.label for c in ccs]

3 Image Processing on the C++ Side

When you write custom image methods that access individual pixels, it ischidea to implement them
in C++ rather than Python for performance reasons. While it is theoretjpadlsible to directly add your
code to the core code of Gamera, it is much more reasonable to collectwouslogins in atoolkit.
This does not only reduce the compilation time for your plugins considerailniyif also lets you keep
your code independent from the Gamera core code.

3.1 Organizing your code in a toolkit
A first introduction to Gamera toolkits is the HowTo “Writing Gamera toolkits” in them@ea online
documentation. To get started with writing plugins, do the following:

e Download the skeleton toolkit, unpack it and rename it to a name of your clleices assume
that this name benypluging:

Gamera Tutorial CD

tar xzf skeleton-version.tar.gz
nv skel et on-versi on mypl ugi ns

cd nypl ugi ns
pyt hon renane. py mypl ugi ns

Hereversionstands for the version number of the skeleton toolkit. If you choose aeliff@ame
for your toolkit, make sure that your name is a valid Python identifier; in pdatidtmay not
contain hyphens or dots!

e Change the category of the demo plugiearin the file
gamer a/ t ool ki t s/ mypl ugi ns/ pl ugi ns/ cl ear. py

from “Draw” to something different, e.g. “My Plugins”. This defines thetgmn of the plugin in
the image right click menu of the Gamera GUI.

e Compile and install the toolkit with
pyt hon setup.py build && sudo python setup.py install

When compiling the toolkit under Windows, make sure that you use the samaélepthpt was
used for building Gamera. To this end, it is generally necessary to comgliiestall Gamera from
the sources and not to rely on a Gamera binary install!

To have access to plugins defined in your toolkit in the Gamera GUI, youimpstt it over the “Toolk-
its” main menu ingameragui. To have access to your plugins in a script, import your toolkit fvith

from ganera.tool kits. myplugins inport =*

In Python lingo, a Gamera toolkit is not a module, byiackagei.e. a collection of python modules.
This means that the above statement does nothing but to execute thimifile.pyin the directorygam-
era.toolkits.mypluginsThere are different ways to let this actually load the plugins defined intgolkit
(see|[2]). The skeleton toolkit does this by directly importing the modldar.pywith the following line
in gamera/toolkits/mypluginsinit__.py

from ganera.tool kits. mypl ugi ns. plugins inport clear

An alternative method is as follows. Let us assume you have written some pligthe filegam-
era.toolkits.myplugins/plugins/bla.pyo import them all automatically with the import of your toolkit,
do the following:

¢ Replace the above line gmmera/toolkits/mypluginsinit__.py with
i mport plugins
This loads the file_init__.pyin the subdirectorplugins
¢ In the latter fileplugins/_init__.py, a plugin module namebla.pycan be loaded with
i mport bla

This will load all image methods defined in the module, but no free functionsatkeatot image
methods. If you also want to load them by default, use the following line instead:

frombla inport =*

SAlternatively, you can of course directly import only specific plugin fiimes from your toolkit with the usual Python
ways for importing modules. This includes the possibility to import plugins inttifferent than the public namespace. See
your Python documentation for details, e.g. the chapter “Modules acichBas” in [2].

10

Gamera Tutorial CD

3.2 Writing C++ plugins

The definitive guide for writing your own C++ plugins are the HowTos “WqgtiGamera plugins”,
“Specifying arguments for plugin generation” and “The Gamera C++ Irddjé in the Gamera online
documentation. The best way to start learning writing plugins is by readiisg tHewTos!

To get a safe base from which to start, try to copy the example plugimmefrom the HowTo “Writing
Gamera plugins” into your toolkit:

e Create the filegexample.pyandexample.hppt the appropriate locations in your toolkit and copy
the code from the HowTo therein.
Beware:To avoid unnecessary trouble, rename the plugin function from “volumé&tdantvol-
ume” in both files, because otherwise it conflicts with Wiaéumeplugin of the Gamera core!

e Make sure that the new modutgample.pys imported in__init__.py, as described in the preceding
section.

e Compile your toolkit again and install it with
pyt hon setup.py build &% sudo python setup.py install
e Test your toolkit with the following simple script (the result should be ardund):

from ganmera. core inport =*
init_ganmera()
from ganera.tool kits. myplugins inport =*
img = Il mage(Point(0,0), Point(9,9))
img.drawfilledrect(Point(3,3), Point(5,5), 1)
print inmg.countvol ume()
The code for this simple plugicountvolumelready shows a number of peculiarities of C++ plugins:

e What is an imageroperty on the Python side, is typically methodon the C++ side (see e.g.
ncols.

e On the C++ size the image data type is templatized. The data type(s) is (ardépddastead in
the Python wrapper file in the parameseitf type

The heavy use of templates can lead to very weird error messages domipgation, so make sure that
you first get the interface of a new plugin right by compiling a dummy implementatitimthe planned
interface, before you fill your new plugin with algorithmic content.

3.2.1 Returning images from plugins

While the above example plugin poses no problem because the managingroateetypes is done by
the Gamera interface, it gets more intricate when you want to return an imaggh means that you
must yourself create an image in your code with a data type that matches thesGatedace.

You must always return the imagéewand never the underlyingata Once the image view is returned,
Python takes care of the memory management with its garbage collection.nfgoltemporary images
in your plugin that are not returned to Python, make sure that you delete bnth data and view.

In the simplest case, you want to return an image of the same type as the inpet rhagcan be done
with the “ImageFactories” described in the HowTo “The Gamera C++ ImadéasHollows:

11

Gamera Tutorial CD

t enpl at e<cl ass T>

| mage* nypl ugi n(const T &src) {
t ypedef typenane | nageFactory<T>::data_type data.type;
t ypedef typenane | nageFactory<T>::viewtype viewtype;

dat a_t ypex dest data = new data_type(src.size(), src.origin());
vi ewtype* dest = new viewtype(*dest_data);

/1

return dest;

}

If you need to always return a specific data type independent from plug iimage, you can create it as
follows (in this example we create a onebit image):

t enpl at e<cl ass T>
OneBi t | nageVi ew+ nypl ugi n(const T &src) {
OneBi t | mageDat a* dest data =
new OneBit | mageDat a(src. size(),src.origin());
OneBi t | nageVi ew+ dest =
new OneBitl nmageVi ew(*dest _data, src.origin(),src.size()
/1
return dest;

3.2.2 Dealing simultaneously with different image types

C++ plugin functions are template functions, which means that the same fuisti@merated at com-
pile time for all images types specified in the Python interface of your plugiarélare a number of
techniques for making your code work simultaneously with different datkestyp

e The pixel value type of the generic image typef your plugin is given by
typedef typenanme T::value_type val ue_type;

e The particular values for white and black (note that 0 is white for onebit isydg# black for
greyscale images) can be obtained withite(img)andblack(img)whereimgis an image view of
the data type in question. Moreover, you can check whether a pixel ishlack or white with
is_blackor is_white, respectively.

e For storing arithmetic combinations of pixel values, you can use the temieteericTraits

t ypedef typenane T::val ue_type val ue_type;
typedef typename NunericTraits<val ue_type>::Pronpote sumtype;
t ypedef typenanme NunericTraits<val ue_type>:: Real Pronpte avg._type;

In this examplesumtypecan hold sums of pixel values aagg typecan holdsumtypes multi-
plied with a floating point number.

Unlike on the Python side, theren® wayto query the pixel type of an image on the C++ didEhere-
fore, template specializati@is the way of choice for implementing algorithms that need to distinguish
between different image types. Suppose you want implement a plugin thatg@n image of the same

"See M. Droettboom’s emails to the Gamera mailing list from 2004/11/15 fetaildd discussion of this problem [5].
8For an introduction teemplate specializatigrsee e.g. [6].

12

Gamera Tutorial CD

type as the input image and works the same on onebit and greyscale imaigesedbs different code on
color images. This can be done as follows:

/1 generic version for ONEBI T and GREYSCALE
tenpl at e<cl ass T>
| mage* spectest(const T &src) {
t ypedef typenane | nageFactory<T>::data_type data.type;
t ypedef typenane | nageFactory<T>::viewtype viewtype;
dat a_t ypex dest data = new data_type(src.size(), src.origin());
vi ewtype* dest = new vi ewtype(*dest_data);
/1
return dest;

}

/1 specialized version for RGB images
t enpl at e<>
| mage* spectest (const RGBI mageVi ew &src) {
RGBI rageDat a* dest data =
new RGBI nageDat a(src. size(),src.origin());
RGBI mageVi ewx dest =
new RGBI nageVi ew *dest _data, src.origin(),src.size());
/1
return dest;

Exercises for Section 3

Exercise 3.1 Write a C++ plugin that flips every second white pixel of a onebit image to black
e Call the pluginflipl and let it change the input image.
e Call the pluginflip2 and let it return the resulting image.

Exercise 3.2 Write two variants of the plugifiip2 of the previous exercise that both access the individual
pixels with get(Point(x,y))andsetin a loop overz and andy. One variant shall have theloop
outside and one the-loop.

Show by measuring the runtimes of both variants that it is always better in @Gambiave the
outer loop vary ovey and the inner loop ovet. You can measure the runtime as follows:

i mport time
t = tinme.tine()
res = inmg.flip2()
t =tine.tine() - t
print ("Runtinme: %" %t)
Exercise 3.3 Write a C++ plugin that replaces the pixel value at positiony) with the average over
positionsz — 1 to x + 1. In other words, an imagg(x, y) shall be transformed to

1 +1

i=—1

13

Gamera Tutorial CD
L e

Images . -
Classifier | —s Resul

Figure 6: Before symbols can be recognized, a training database hastedied from sample images.

The result shall be returned as a greyscale image. Find a solution forablem that the values
for white and black are exchanged in onebit and greyscale images. Hints:

e The solution consists either in the use of template specialization or a (slightly) triitiza-
tion of the functiondlackandwhite

e UseNumericTraitsfor computing the average.

e Make sure that the sum does not go beyond the image borders. Whytigittodake care of
the borders in the range of the for-loops rather than doing a rangk tteéde the for-loops?

4 Symbol Recognition

Symbol recognition in Gamera is a two stage operation (see Fig. 6):

a) First you must take some sample images and assign “classes” manually tocuhéng symbols.
This stage is calletraining. The result of this step is ®aining databasewhich is stored in an
XML file.

b) The sample images in the training database are then used by Gamerdiectassctually classify
symbols passed to it.

The training step is only done once, and the resulting training databaseeteibehised to recognize an
arbitrary number of images.

4.1 Training

Training is done over the Gamera GUI and is described exhaustively inahdd1“Training Tutorial”

of the Gamera online documentation. The only tricky part is how to specifyelrglyphs as a single
symbol, be it deliberately broken characters like lower case “i”, or ramigdoroken characters due to
low print or scan quality. For these symbols, the prefigf oup.” must be added to the class name.
They will then be stored in the training database as a combined image with a@taesot carrying the
“_group. ” prefix.

4.2 Features and kNN classification

Symbols are differentiated by meandeftures Consider for instance the characters lower case “a” and
“b": these have a different aspect ratio, so the real nuraspectratio can be used for classifying un-
known symbols as either “a” or “b”. Features are implemented in Gameragisplnd are documented
in the reference “Plugins/Features” in the online documentation. All fesitexen those consisting of a

14

Gamera Tutorial CD

A
f—\ training samples of
two dlfferent classe

feature 2

Figure 7: ThekNN classifier assigns an un-
known point in feature space to the majority
feature 1' class among it& nearest neighbors.

single value likeaspectratio, return a floating point vector. So you can query the aspect ratio of a CC
with cc.aspectatio()[0].

The computation of features from a symbol maps the symbol to a pofeatare spaceThe classifier
then assigns a point in feature space to a speddiss thereby utilizing the training database. The most
important classification technique built into Gamera is ki classifiey where “kNN” stands for “k
nearest neighbor! [7].

The principle of the kNN classifier is shown in Fig. 7. The red crossebhrpluses denote the feature
space points of training symbols belonging to two different classes. Tt¢ledi@le denotes the feature
space point of an unknown symbol. Fer= 3, it is assigned to the class of the red crosses, because
among itsk = 3 nearest neighbors the majority are red crosses.

During classification, you can choose two parameters: the paramgtehe KNN classifier, and the set

of features. The choice df depends on the minimum number of training samples you have for each
class. [7] gives some rules of thumb, but in most practical cases this loovts th £ = 1, unless you
have an abundant amount of traing data.

Concerning the set of features, the combinatiaspectratio, moments, volume64regignand
nrows featurehas turned out to yield good results for different printed documents inéaent studies
([8], [9]), both with regard to the holdout error rate and a crossedation error estimafe The “Clas-
sifier optimization” described in the HowTo “The Gamera GUI” in the Gamera erdimcumentation is
an alternative interesting method to let an automatic algorithm figure out théchéste set on his own,
based only on the training data.

4.3 Using the classifier in scripts

For symbol recognition, you can use the claBBNNonlInteractivewhich is defined in the modulenn
This module is not loaded by the Gamera core, so that you must load it explidily w

from gamera inport knn

The claskNNNonInteractivés described in details in the HowTo “Gamera classifier API” in the Gamera
online documentation. To create a kNN classifier, use

cknn = knn. kNNNonl nt eractive([],
["aspect ratio", "monments", "vol ume64r egi ons", "nrows feature"],
0, nornal i ze=Tr ue)

where the second argument is the list of features. Alternatively, yolatanset the features with the
methodchangefeatureset To swith on and off individual components of each feature, you cali+ ad

°In case you are interested in the technical definition of different estimates, you can find them explained/in [7].

15

Gamera Tutorial CD

tionally use the functioset selectionsby_feature The valuek defaults to one and is accessible through
the propertynumk. A training data file (e.gdata.xm) can be read with the method

cknn. fromxm fil enanme("data. xm ")

If you have a list of images like the list returned bg analysis you can classify all images from the list
imagelistwith

cknn.classify_list_automatic(inagelist)

For each symbol fronimagelist all classes found among its neighbors in feature space are stored
in the propertyid_nameof the image. The classes are stored as tufdesfidence, classnameyhere
classnamas the actual class arzbnfidencas some measure for the distance in feature space that can
generally be ignored for classification (for more information about cenfid computation in Gamera
and what it can be used for, see [10]).

The most frequent class among tkenearest neighbors can be queried with the image method
getmain.id, which simply returnsd_name[0][1]. Here is a simple use case:

ccs = i mage. cc_anal ysi s()
cknn.classify_list_automatic(ccs)
for c¢c in ccs:
if c.match.idname(".xlower.*"): # regex matching
print ("lower case letter %" %c.get _main.id())

You can also classify symbols without a classifier witassifyheuristic This can be useful when some
symbols shall be classified by decision rules rather than statistical traintag akin the following
example:

for ¢ in ccs:
if c.ncols <5 and c.nrows > 20:
c.classify_heuristic("vertical _line")

classifylist_automaticis only useful when the segmentation of the symbols worked well, because it
classifies each symbol individually. When you have deliberately or rahdbroken symbols, it is more
useful to usgyroup.list_automatic which automatically tries to join broken characters with the algorithm
described in [11].

The kNNNonInteractivenethodgroup list_automaticdoes not change the input image list, but instead
returns the information which symbols are to be merged in two (&dsl, remove)You must then use
this information to update the image list, theoretically. Practically, there is a cem@nfunction that
already does thigroup.and.updatelist_automaticreturns the already updated list of images. It is called

cl assi fiedi ngs = cknn. group_and_update_li st _automatic(inglist, \
groupi ng_functi on, max_parts_per _group=3)

where groupingfunction controls whether two symbols are to be considered as candidates for be-
longing to the same group. It can BhapedGroupingFunction(matistance)or BasicGroupingFunc-
tion(maxdistance) which are defined in the modugmmera.classifyThe grouping algorithm checks a
graph of grouping hypotheses, which has an exponential worstwath®e. You therefore should choose
small values both fomaxdistanceandmax parts per_group.

16

Gamera Tutorial CD

4.4 Evaluating a classifier

To evaluate how good a classifier recognizes unknown symbols yolegamest an image, load it into
the classifier GUI and select the menu “Classifier/Guess all” oder “ClagGifeup and guess all”. To
inspect the classification result of a script, you can save the classifipdsgig your script to an XML

file with glyphsto_xm|, e.g.

result = cknn.group_and_update_list _automatic(ccs, \
gr oupi ng_f unct i on=Boundi ngBoxG oupi ngFunction(4), \
max_part s_per _group=3)

ganeraxm . gl yphs_toxm ("knn-results.xm ", result, Fal se)

To inspect the written XML file, you can load it as “page glyphs” into the d&ssGUI (menu “File/Page
glyphs/Open glyphs into page editor”).

The methocdevaluate(¥or KNN classifiers is an alternative option to automatically evaluate the classifie
on the training data alone with the “leave-one-out” method, also known-&sld cross-validation” [7].

It returns the recognition rate and is very useful for automatically optimizinaim parameters likie or

the chosen feature set.

Exercises for Section 4

Exercise 4.1 Write on a sheet of paper 20 instances of one character (e.g. “@’praa second paper
20 instances of a different character (e.g. “b”). Make sure thathallacters are a single CC (for
easy segmentation wittt_analysig and scan both pages to a raster image.

Plot the distribution of all of your symbols in a two dimensional feature spadellaws:
e segment both images into CCs with analysis
e read for each CC two feature values of your choice, e.g.

featurel = c.aspect ratio()[0]
feature2 = c. nmonments()[2]

¢ write aGnuplotcontrol file plot.datof the form

plot '-' with points title "a’, -’ with points title 'b’
feature values class a
0.7692 0.1315

e
feature values class b
1.3421 2.9872

o display the plot with the commarghuplot -persist plot.dat

Exercise 4.2 Use the two images from the preceding exercise to create a training datatsening five
from each of your two characters. Write a script that uses this trainitagetato recognize all
characters from both images wittkBINNonInteractivelassifier.

17

Gamera Tutorial CD

Try different sets of features and valueskadind measure the recognition rates for both characters
(recogniton rate = number of correctly classified symbols divided by thiertataber of symbols).

Hint. How a training dataset is built fromeveralimages can be learnt in the section “On to the
second page” of the “Training tutorial” in the Gamera online documentation.

Exercise 4.3 Create a training set from all your handwritten glyphs and use the metraddateto find
out theindividual feature leading to the best recognition rate.

Hint: To change the feature set, use the kNNNonInteractive-methadgefeature set

References

[1] M. Droettboom, C. DalitzThe Gamera Homepagg008-2009)
http://ganera.informatik. hsnr. de/

[2] D.M. Beazley:Python Essential Referencg&ams Publishing (third ed., 2006)

[3] N. Otsu:A threshold selection method from grey level histogrdBEE Transactions on Systems,
Man, and Cybernetics, vol. 9, pp. 62-66 (1979)

[4] T. Williams, C. Kelly et al.:Gnuplot version 4.22007). Freely available from
http://ww. gnupl ot. i nfo/

[5] Yahoo! Groupsgamera-devel Message Histo(2004-2009)
http://tech. groups. yahoo. com group/ ganer a- devel /

[6] B. StroustrupThe C++ Programming Languagéddison-Wesley (third ed., 1997)
[7] A. Webb: Statistical Pattern RecognitiofwViley-Interscience (second ed., 2002)

[8] C. Dalitz, T. KarstenUsing the Gamera Framework for building a Lute Tablature Recognition
SystemProceedings ISMIR 2005, pp. 478-481, 2005

[9] C. Dalitz, G.K. Michalakis, C. Pranza@ptical Recognition of Psaltic Byzantine Chant Notation.
International Journal of Document Analysis and Recognition, vol. 211p3-158 (2008)

[10] C. Dalitz: Reject Options and Confidence Measures for KNN Classifiefs. Dalitz (Ed.):
“Document Image Analysis with the Gamera Framework.” Schriftenreiné-delsbereichs
Elektrotechnik und Informatik, Hochschule Niederrhein, vol. 8, pp3&6Shaker Verlag (2009)

[11] M. Droettboom:Correcting broken characters in the recognition of historical printed doeauts.
Joint Conference on Digital Libraries (JCDL'03), pp. 364-366 200

18

http://gamera.informatik.hsnr.de/
http://www.gnuplot.info/
http://tech.groups.yahoo.com/group/gamera-devel/

	Overview
	Using Gamera
	Extending Gamera

	Image Processing on the Python Side
	Image creation
	Pixel access and image methods
	Image views
	Special operations for onebit images
	Combining onebit images
	Color highlighting
	Projections and runlegths
	Connected components

	Exercises

	Image Processing on the C++ Side
	Organizing your code in a toolkit
	Writing C++ plugins
	Returning images from plugins
	Dealing simultaneously with different image types

	Exercises

	Symbol Recognition
	Training
	Features and kNN classification
	Using the classifier in scripts
	Evaluating a classifier
	Exercises

